
Git
(Why not CVS? ... because Git.)

Karel Zak
Florian Festi
Bart Trojanowski

December 20, 2007

Copyright © 2007 Karel Zak
Copyright © 2007 Tomas Janousek (beamer template)
Copyright © 2007 Florian Festi
Copyright © 2007 Bart Trojanowski

Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts.

Source code: http://kzak.fedorapeople.org/git-presentation.git

Agenda

1 Intro
Development model
Commands

2 Implementation
Internal objects
Naming revisions

3 Getting started
Configuration
Visualisation

4 Branches

5 Real life with Git
Changing History
Handling Patches

6 Misc

Section 1

Intro

Intro

What is Git?

“I’m an egotistical bastard, and I name all my projects
after myself. First ’Linux’, now ’git’.” (Linus Torvalds)

fast distributed revision control system

unusually rich command set

provides both high-level operations and full access to internals

originally created by Linus Torvalds for kernel development

design was inspired by BitKeeper and Monotone

GNU General Public License, version 2

Intro

Basic features

distributed development model

support for non-linear development (branching and merging)

ready for large projects (very good performance)

repositories can be easily published (git://, ssh://, http://,
rsync://, ...)

cryptographic authentication of history (GPG-signed tags)

internally objects are addressed by content (SHA-1) – not
filenames

local branches are local only (off-line work)

Intro Development model

Centralized model

extra policy for write access

SCM is not development tool, but source code archive only

every change has impact to all developers

no privat branches

needs connection to server for most operations

Intro Development model

Distributed model

maintainer has full control over primary (his) repository

support for non-linear development

repositories can be easily published (git://, ssh://, http://, ...)

Intro Development model

Git improves your work manners and habits

branching and merging is cheap

you can prototype
you can collaborate with others developers on incomplete and
unstable stuff
you can easily (e.g. every day) rebase your changes to new
upstream code
merge (rebase) often minimizes conflicts between your patches
and upstream

small patch is the best patch (patch per feature/change)

reviewers hate huge patches
well separated feature or change is easy to revert
per item commit messages

much less dependent on your patches going in upstream

manage patches - not just store them

Intro Development model

Workflow

Changes go through several stages before ending up in their final
destination

working dir current checkout - editing happens here

index aka “cache” aka “staging area” - changes that are
selected to be commited

commit now packaged up with a commit message and
part of the history

master branch move the commits over when the feature is
finished

origin get the changes upstream

Intro Commands

Syntax

git <commandname> [options]

git-<commandname> [options]

man git-<commandname>

git help <commandname>

High level commands: Porcelain

$ git commit -a -s -m "cool change"

Low level commands: Plumbing

$ git rev-list --pretty=oneline v2.13..

Intro Commands

Basic commands (local)

git init creates en empty repository at ./.git

git add adds file contents to the next commit

git rm removes a file

git mv move a file

git status shows the working tree status

git commit records changes to the repository

git log shows commit log

git show shows commit (or another object)

Intro Commands

Basic commands (remote)

git fetch get new changes from external repository

git pull fetch + merge

git push write new changes to external repository

git format-patch exports a change

git send-email sends patch(s)

git am applies a series of patches from a mailbox

Intro Commands

Advanced Commands (local)

git branch create/modify/delete branches

git checkout switch work dir to another branch/commit

git merge merge two or more branches

git rebase changes starting point of a branch

git cherry-pick copy patch from another branch

git reset set back a branch HEAD

git bisect find the breaking patch

git stash save/restore current work dir changes

git gc compactify repository and do clean ups

Section 2

Implementation

Implementation Internal objects

Internal objects

All objects are content-addressable by SHA-1.

commit refers to “tree” and “parent” (connection into the
project history) and contains the commit message

tree represents the state of a single directory (list of “blob”
objects and subtrees)

blob contains file data without any other structure

Implementation Internal objects

Internal objects

commit – connection between “tree” and “parent“

tree – state of a single directory

blob – contain file data

Implementation Internal objects

References

Tag

contains SHA-1 sum of a commit
may contain an explaining message
can be PGP-signed
stays fix
.git/refs/tags

Branch

SHA-1 sum of a commit
“leaf” of the history “tree”
follows the commits to that branch
.git/refs/heads

tracked branches - .git/refs/remotes/ origin

HEAD - the current branch

ORIG HEAD - HEAD before the last reset

Implementation Internal objects

Trust

everything is content-addressed and based on SHA-1

two trees are same when HEAD SHA-1 are same

SHA-1 summ are checked to asure data integrity

content, history and commit messages can be signed by only
GPG-signing one tag

$ git tag -v v2.13

object 49ef7acdf77066ed05a6c828c261d332c4f54644

type commit

tag v2.13

tagger Karel Zak <kzak@redhat.com> Tue Aug 28 01:01:35 2007 +0200

stable release v2.13

gpg: Signature made Tue 28 Aug 2007 01:01:35 AM CEST using DSA key ID DC06D885

gpg: Good signature from "Karel Zak <kzak@redhat.com>"

Implementation Naming revisions

Object reference

SHA-1 40-hexdigit object name

tag human readable name for commit

commit^n N-th parent

commit~n N-th generation grand-parent of the named commit
object, following only the first parent.

ref@{date} specify the value of the ref at a prior point in time

:/text commit whose commit message starts with the
specified text

HEAD refers to the head of the current branch

rev~3 = rev^^^ = rev^1^1^1

$ git reset HEAD^

Implementation Naming revisions

Ranges

r1..r2 commits reachable from r2 but exclude the ones reachable
from r1

r1...r2 set of commits that are reachable from either one of r1 or
r2 but not from both

$ git log v2.13..v2.14

Implementation Naming revisions

”tree-ish”

Lots of commands take a tree as an argument. A tree can be
referred to in many different ways, by:

name for that tree

name of a commit that refers to the tree

name of a branch whose head refers to that tree

Section 3

Getting started

Getting started Configuration

Configuration

global configuration is in ∼/.gitconfig

$ git config --global --list
user.name=Florian Festi
user.email=ffesti@redhat.com
diff.color=auto

repository configuration is in repo/.git/config

$ git config --list

changing settings

$ git config --global user.name "Florian Festi"
$ git config --global user.email ffesti@redhat.com

Getting started Configuration

.gitconfig

simple sample config

[user]
name= Florian Festi
email = ffesti@redhat.com

[diff]
color = auto

see man git-config for all config options

Getting started Configuration

Create a repository

create a new repository

$ mkdir project
$ cd project
$ git init

clone an existing remote repository (”origin” repository)

$ git clone http://foo.com/project

add a next remote repository

$ git config remote.bar.url git://bar.com/project
$ git config remote.bar.fetch master:refs/remotes/bar/master
$ git fetch bar

Getting started Configuration

Repository config file

[core]
repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true

[remote "origin"]
url = ssh://login.linux.duke.edu/.../yum.git
fetch = +refs/heads/*:refs/remotes/origin/*

[branch "master"]
remote = origin
merge = refs/heads/master

Getting started Visualisation

Visualisation

visualization helps when working with branches

http://git.or.cz/gitwiki/InterfacesFrontendsAndTools

History viewer:

gitk Tcl/Tk History Viewer

qgit Qt History Viewer, patch import/export

gitweb Web front end (CGI, mod perl)

Commit tools

git gui Tcl/Tk, builtin

Getting started Visualisation

Visualisation: gitk

Getting started Visualisation

Visualisation: qgit

Getting started Visualisation

Visualisation: Gitweb

Getting started Visualisation

Browsing changes

git log shows commit logs

git show shows one or more objects (blobs, trees, tags
and commits)

git blame shows what revision and author last modified
each line of a file

git whatchanged shows logs with difference each commit
introduces

$ git log v2.5.. # commits since v2.5

$ git log test..master # commits reachable from master

but not test

$ git log --since="2 weeks ago" # commits from the last 2 weeks

$ git log Makefile # commits which modify Makefile

$ git log --pretty=format:"%h [%an]" # commit log in format

"sha-1 [Author Name]"

$ git blame -L 10,15 foo.c # who modified code between lines

10 and 15

$ git show c1a47c171b # shows selected object (commit)

Section 4

Branches

Branches

Branches

o--o--o <-- Branch A
/

o--o--o--o--o <-- master
\
o--o--o <-- Branch B

branch is line of development

branch head is a reference to the most recent commit on a branch

branches become remote branches when cloning a repository

use git branch -a (all) or -r (remote) to see the remote
branches

Branches

Manipulating branches

git branch lists, creates, or deletes branches

git checkout <branch> makes the current branch <branch>,
updating the working directory

git checkout -b <branch> creates a new branch
<branch>check it out

git show-branch shows branches and their commits

git diff <branch>..<branch> diffs between branches

Branches

Merge branch

Before

A---B---C topic
/

D---E---F---G master

Command

$ git merge topic

After

A---B---C topic
/ \

D---E---F---G---H master

Branches

Rebase branch

Before

A---B---C topic
/

D---E---F---G master

Command

$ git rebase master topic

After

A---B---C topic
/

D---E---F---G master

Alternative

$ git rebase -i topic

Branches

Merge vs Rebase

Merge

does an 3-way merge (for simple cases)
leads to non linear history
merging several branches with each other looks messy
keeps separate branches visible
Use in public repositories!

Rebase

reapplies the patches on top
alters history - new patches with new SHA-1 sums
breaks work based on that branch
therefore not suited for published work
allows creating “the perfect patch” against upstream
Use for private work!

Read the man pages for details!

Branches

Resolve Conflicts

Read the messages!

resolved stuff gets added to the index

conflicts are applied to the work dir only

resolve and add to index

merge: commit

rebase: --continue, --abort or --skip

Section 5

Real life with Git

Real life with Git Changing History

Edit 3rd commit from the top

1 Working on branch master

A--B--C--D--E(master)

2 realized you made a mistake in commit ’B’

$ git checkout HEAD~3
$ git commit --amend

.B'(HEAD)
/
A--B--C--D--E(master)

3 bring back the other commits

$ git rebase HEAD master
A--B'--C--D--E(master)

Real life with Git Changing History

Changes in project history

the very last patch – "git commit --amend" to add changes
to last commit

the latest patches – "git reset" to remove the last commits
from the history

organize your own branch

"git cherry-pick" patch per patch into a new branch
"git rebase -i" to freely reorder patches

deep in project history

"git rebase" to move around large part of the history
"git revert" to add a reversed patch on top

Real life with Git Handling Patches

Send a patch

Basic rules:

one patch per e-mail

don’t use stupid e-mail clients (e.g. Outlook)

don’t use attachments

export patches by git format-patch

send patches by git send-email

well formatted patch is possible to apply by git am

don’t forget to keep correct authorship (e.g when you are
not author of the patch)

use commit messages – a patch without comment is
incomplete crap

Real life with Git Handling Patches

Export patches to files

git format-patch [options] <since|range>

creates one file per patch

created patches are usable by git am

$ git format-patch -o ~/ HEAD~5

/home/kzak/0001-setterm-opened-file-leaving-unclosed.patch

/home/kzak/0002-sfdisk-opened-files-leaving-unclosed.patch

/home/kzak/0003-blockdev-fix-opened-file-leaving-unclosed.patch

/home/kzak/0004-tailf-opened-file-leaving-unclosed.patch

/home/kzak/0005-tests-use-losetup-s.patch

Real life with Git Handling Patches

Patch description

Real life with Git Handling Patches

Send patches by e-mail

git send-email [options] <file|dir>

Takes the patches given on the command line and emails them out.

no attachments

no broken patch format

correct subject line

$ git send-email --to "God <father@heaven.com>" \
~/0001-make-this-world-better.patch

Section 6

Misc

Misc

References

Git User’s Manual
http://www.kernel.org/pub/software/scm/git/docs/
user-manual.html

A tutorial introduction to git
http://www.kernel.org/pub/software/scm/git/docs/
tutorial.html

The perfect patch
http://www.zip.com.au/∼akpm/linux/patches/stuff/
tpp.txt

http://www.kernel.org/pub/software/scm/git/docs/user-manual.html
http://www.kernel.org/pub/software/scm/git/docs/user-manual.html
http://www.kernel.org/pub/software/scm/git/docs/tutorial.html
http://www.kernel.org/pub/software/scm/git/docs/tutorial.html
http://www.zip.com.au/~akpm/linux/patches/stuff/tpp.txt
http://www.zip.com.au/~akpm/linux/patches/stuff/tpp.txt

The end.
Thanks for listening.

http://kzak.fedorapeople.org/git-presentation.pdf

http://kzak.fedorapeople.org/git-presentation.pdf

	Intro
	Development model
	Commands

	Implementation
	Internal objects
	Naming revisions

	Getting started
	Configuration
	Visualisation

	Branches
	Real life with Git
	Changing History
	Handling Patches

	Misc

